<sup id="ic2ca"><div id="ic2ca"></div></sup>
<sup id="ic2ca"></sup>
<rt id="ic2ca"><small id="ic2ca"></small></rt>
在線閱讀 --自然科學版 2020年6期《項鏈圖的邊度量生成集》
項鏈圖的邊度量生成集--[在線閱讀]
羅娜娜
河北師范大學 數學科學學院, 河北 石家莊 050024
起止頁碼: 461--466頁
DOI: 10.13763/j.cnki.jhebnu.nse.2020.06.001
摘要
圖的度量維數問題是組合優化領域研究的一個熱點問題,邊度量生成集問題是其一個重要變形.給出了項鏈圖的一個邊度量生成集,并證明了其邊度量維數為3.

Edge Metric Generator for Necklace Graph
LUO Nana
School of Mathematical Sciences, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
The metric dimension problem of graphs is a hot issue in the field of combinatorial optimization.The problem of edge metric generator is an important variant.This paper gives an edge metric generator of necklace graphs,and proves that its edge metric dimension is 3.

收稿日期: 2020-01-05
基金項目: 河北省自然科學基金(A2019205092)

參考文獻:
[1]HARARY F,MELTER R A.On the Metric Dimension of a Graph[J].J Ars Combin,1976,2:191-195.
[2]SLATER P J.Leaves of Trees[J].J Congr Numer,1975,14:549-559.
[3]GAREY M R,JOHNSON D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].New York:W H Freeman and Company,1979.
[4]FEHR M,GOSSELIN S,OELLERMANN O R.The Metric Dimension of Cayley Digraphs[J].J Discrete Math,2006,306(1):31-41.doi:10.1016/j.disc.2005.09.015
[5]CÁCERES J,HERNANDO C,MORA M,et al.On the Metric Dimension of Cartesian Products of Graphs[J].SIAM J Discrete Math,2007,21(2):423-441.doi:10.1137/050641867
[6]FERNAU H,HEGGERNES P,VAN'T H P,et al.Computing the Metric Dimension for Chain Graphs[J].J Inf Process Lett,2015,115(9):671-676.doi:10.1016/j.ipl.2015.04.006
[7]CÁCERES J,HERNANDO C,MORA M,et al.On the Metric Dimension of Infinite Graphs[J].J Electron Notes Discrete Math,2009,35:15-20.doi:10.1016/j.erdm.2009.11.004
[8]FENG M,XU M,WANG K.On the Metric Dimension of Line Graphs[J].J Discrete Appl Math,2013,161(6):802-805.doi:10.1016/j.dam.2012.10.018
[9]HALLAWAY M,KANG C X,YI E.On Metric Dimension of Permutation Graphs[J].J Comb Optim,2014,28(4):814-826.doi:10.1007/s10878-012-9587-3
[10]IMRAN M,BAIG A Q,BOKHARY S,et al.On the Metric Dimension of Circulant Graphs[J].J Appl Math Lett,2012,25(3):320-325.doi:10.1016/j.aml.2011.09.008
[11]KELENC A,TRATNIK N,YERO I G.Uniquely Identifying the Edges of a Graph:The Edge Metric Dimension[J].J Discrete Appl Math,2018,251:204-220.doi:10.1016/j.dam.2018.05.052
[12]ZUBRILINA N.On the Edge Dimension of a Graph[J].J Discrete Math,2018,341(7):2083-2088.doi:10.1016/j.disc.2018.040.010
[13]FILIPOVIĆ V,KARTELJ A,KRATICA J.Edge Metric Dimension of Some Generalized Petersen Graphs[J].J Results in Math,2019,74(4):182-189.doi:10.1007/s00025-019-1105-9
[14]PETERIN I,YERO I G.Edge Metric Dimension of Some Gragh Operations[J].Bull Malays Math Sci Soc,2020(43),2465-2477.doi:10.1007/s40840-019-00816-7
[15]ZHU E,TARANENKO A,SHAO Z,et al.On Graphs with the Maximum Edge Metric Dimension[J].J Discrete Appl Math,2019,257:317-324.doi:10.1016/j.dam.2018.08.031
[16]TOMESCU I,IMRAN M.R-Sets and Metric Dimension of Necklace Graphs[J].J Appl Math Inf Sci,2015,9(1):63-67.doi:10.12785/amis/010109
[17]ROJO O,MEDINA L,de ABREU N M,et al.Extremal Algebraic Connectivities of Certain Caterpillar Classes and Symmetric Caterpillars[J].Electron J Linear Algebra,2010,20:136-157.doi:10.13001/1081-3810.1364
[18]SYSLO M M,PROSKUROWSKI A.On Halin Graphs[M]//BOROWIECKI M,KENNEDY J W,SYSLO M M.Graph Theory,Lecture Notes in Math,Berlin:Springer,1983:248-256.
916彩票